If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+5v-1050=0
a = 1; b = 5; c = -1050;
Δ = b2-4ac
Δ = 52-4·1·(-1050)
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4225}=65$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-65}{2*1}=\frac{-70}{2} =-35 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+65}{2*1}=\frac{60}{2} =30 $
| 3y-1=6+7y | | 2/7t-1=15/7 | | 8=5x+13 | | 10(n+9)+9=9n | | 5n^2-29n+72=0 | | -3x+2x=48 | | -3+2x=48 | | 14v+9-5v=-9 | | x2-142x=24 | | 100^2x=500 | | n^2-1n-110=0 | | 4^3x=16 | | -9-2x=-13 | | x˄2+3x(x+2)=28x-7+x˄2 | | 84-3x=78 | | 84-3x=63 | | 5y+2-3y=4+y+6 | | 19=13x+95 | | 48-10x=-42 | | 48-10x=8 | | 2(y–3)=1.2– | | 7(x-4)-9=5x+9 | | 45-5x=25 | | 45-5x=35 | | 0.07+0.06(2400-x)=1650 | | 30+7x=156 | | 0.31(y-2)+0.18y=0.09-0.50 | | -14+2x=120 | | 6z+4z=9z+4 | | 14+3x=110 | | 2x-30=8x-8 | | 2d=-4+6 |